

Simplify, Perfect, Innovate

Combinatorial Testing with Design of Experiments

An Executive Overview

11-CTDOEOVER-6A

Mark J. Kiemele, Ph.D. President and Co-Founder Air Academy Associates

Office: 719-531-0777 Cell: 719-337-0357 mkiemele@airacad.com www.airacad.com

Introductions

Name

- Organization
- Job Title/Responsibilities
- Experience in T&E, Combinatorial Testing, DOE, etc.

- Some Basic Definitions and Terms
- Various Approaches to Testing Multiple Factors
- Design of Experiments (DOE): a Modern Approach to Combinatorial Testing
- Examples and Demonstration of a DOE
- Using DOE to Achieve Design Optimization
- Testing a Very Large Number of Factors
- Test Designs for Mixed Factors (Qualitative and Quantitative) and Mixed Levels

Combinatorial Test Terminology

- **Y:** Output, response variable, dependent variable
- X: Input, factor, independent variable (a measurable entity that is purposely changed during an experiment)

Level: A unique value or choice of a factor (X)

- Run: An experimental combination of the levels of the X's
- **Replication:** Doing or repeating an experimental combination

Effect: The difference or impact on Y when changing X

Interaction: When the effect of one factor depends on the level of another factor

Performance Tuning Terminology

Factors/Inputs (X's)	Levels (Choices)	Performance/Outputs (Y's)
СРИ Туре	Itanium, Xeon	# home page loads/sec
CPU Speed	1 GHz, 2.5 GHz	Cost
RAM Amount	256 MB, 1.5 GB	
HD Size	50 GB, 500 GB	
VM	J2EE, .NET	
OS	Windows, Linux	

Simplify, Perfect, Innovate Which factors are important? Which are not? Which combination of factor choices will maximize performance? How do you know for sure? Show me the data.

©2009 Air Academy Associates, LLC. Do Not Reproduce.

Innovate

Approaches to Testing Multiple Factors

Traditional Approaches

- One Factor at a Time (OFAT)
- Oracle (Best Guess)
- All possible combinations (full factorial)

Modern Approach

 Statistically designed experiments (DOE) ... full factorial plus other selected DOE designs, depending on the situation

OFAT (One Factor at a Time)

Simplify, Perfect, Innovate **IES**

The Good and Bad about OFAT

- Good News
 - Simple
 - Intuitive
 - The way we were originally taught

- Bad News
 - Will not be able estimate variable interaction effects
 - Will not be able to generate prediction models and thus not be able to optimize performance

Oracle (Best Guess)

- X1 = W = Wetting Agent (1=.07 ml; 2=none)
- X2 = P = Plasticizer (1=1ml; 2=none)

X3 = E = Environment (1=Ambient Mixing; 2=Semi-Evacuated)

X4 = C = Cement (1=Portland Type III; 2=Calcium Aluminate)

X5 = A = Additive (1=No Reinforcement; 2=Steel)

Y = Strength of Lunar Concrete

Run	W	Р	Е	С	Α	Y
1	1	2	1	1	1	5
2	1	1	1	1	1	6
3	2	2	1	1	1	5
4	2	1	1	1	2	6
5	1	2	2	2	2	7
6	1	1	2	2	2	8
7	2	2	2	2	2	10
8	2	1	2	2	1	11

All Possible Combinations (Full Factorial)

Innovate

Design of Experiments (DOE)

- An optimal data collection methodology
- "Interrogates" the process
- Used to identify important relationships between input and output factors
- Identifies important interactions between process variables
- Can be used to optimize a process
- Changes "I think" to "I know"

Important Contributions From:

				BLENDED
	TAGUCHI	SHAININ	CLASSICAL	APPROACH
Loss Function	*			*
Emphasis on Variance	*			*
Reduction				
Robust Designs	*			*
KISS	*	*		*
Simple Significance		*		*
Tests				
Component Swapping		*		
Multivariate Charts		*		*
Modeling			*	*
Sample Size			*	*
Efficient Designs			*	*
Optimization			*	*
Confirmation	*			*
Response Surface				
Methods			*	*

Which bag would a world class golfer prefer?

©2011 Air Academy Associates, LLC. Do Not Reproduce.

FS

Simplify, Perfect,

Innovate

Statistically Designed Experiments (DOE): **Orthogonal or Nearly Orthogonal Designs** FULL FACTORIALS (for small numbers of factors) ٠ FRACTIONAL FACTORIALS . **PLACKETT - BURMAN** . LATIN SQUARES **Taguchi Designs** ٠ HADAMARD MATRICES ٠ **BOX - BEHNKEN DESIGNS** ٠ CENTRAL COMPOSITE DESIGNS ٠ NEARLY ORTHOGONAL LATIN HYPERCUBE DESIGNS . SIMPLE DEFINITION OF TWO-LEVEL **ORTHOGONAL DESIGNS** Run Actual Settings Coded Matrix Responses (5.10) (100, 200)(A) (B) (C) A: Time B: Temp C: Press Time Press Temp 5 70 100 1 -1 -1 -1 2 5 70 200 -1 -1 +1 5 90 3 100 -1 +1 -1 5 90 200 -1 +14 +1 10 70 100 5 +1-1 -1 70 10 200 +1-1 +16 90 10 100 +17 +1 -1 10 90 200 +1 +18 +1 Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

The Beauty of Orthogonality: independent evaluation of effects

A Full Factorial Design for 3 Factors, Each at 2 Levels

Run	А	В	С	AB	AC	BC	ABC
1	-	-	-	+	+	+	-
2	-	-	+	+	-	-	+
3	-	+	-	-	+	-	+
4	-	+	+	-	-	+	-
5	+	-	-	-	-	+	+
6	+	-	+	-	+	-	-
7	+	+	-	+	-	-	-
8	+	+	+	+	+	+	+
2011 Air Academy As	ssociates, LLC. D	o Not Reproduce.			Page 18		

Simplify, Perfect, Innovate

FS

Screening Design

				T	aguchi L	.12 Desig	jn				
Run	1	2	3	4	5	6	7	8	9	10	11
1	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	+	+	+	+	+	+
3	-	-	+	+	+	-	-	-	+	+	+
4	-	+	-	+	+	-	+	+	-	-	+
5	-	+	+	-	+	+	-	+	-	+	-
6	-	+	+	+	-	+	+	-	+	-	-
7	+	-	+	+	-	-	+	+	-	+	-
8	+	-	+	-	+	+	+	-	-	-	+
9	+	-	-	+	+	+	-	+	+	-	-
10	+	+	+	-	-	-	-	+	+	-	+
11	+	+	-	+	-	+	-	-	-	+	+
12	+	+	-	-	+	-	+	-	+	+	-

AIR ACADEMY ASSOCIATES

DOE Helps Determine How Inputs Affect Outputs

Innovate

Simplify, Perfect,

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Innovate

Exact Transfer Functions

• Engineering Relationships

• F = ma

The equation for current (I) through this DC circuit is defined by:

$$I = \frac{V}{\frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}} = \frac{V(R_{1} + R_{2})}{R_{1} \cdot R_{2}}$$

The equation for magnetic force at a distance X from the center of a solenoid is:

$$H = \frac{NI}{2\ell} \left[\frac{.5\ell + x}{\sqrt{r^2 + (.5\ell + x)^2}} + \frac{.5\ell - x}{\sqrt{r^2 + (.5\ell - x)^2}} \right]$$

- N: total number of turns of wire in the solenoid
 - I: current in the wire, in amperes
 - r: radius of helix (solenoid), in cm
 - ℓ : length of the helix (solenoid), in cm
 - x: distance from center of helix (solenoid), in cm
- H: magnetizing force, in amperes per centimeter

ASSOCIAT Simplify, Perfect,

Innovate

Hierarchical Transfer Functions

Innovate

Catapulting Power into Test and Evaluation

©2011 Air Academy Associates, LLC. Do Not Reproduce.

FS

Simplify, Perfect, Innovate

The Theoretical Approach (cont.)

Statapult[®] DOE Demo

(The Empirical Approach)

Aircraft Equations

- $C_{L} = .233 + .008(P)^{2} + .255(P) + .012(R) .043(WD1) .117(WD2) + .185(WD3) + .010(P)(WD3) .042(R)(WD1) + .035(R)(WD2) + .016(R)(WD3) + .010(P)(R) .003(WD1)(WD2) .006(WD1)(WD3)$
- $C_{D} = .058 + .016(P)^{2} + .028(P) .004(WD1) .013(WD2) + .013(WD3) + .002(P)(R) .004(P)(WD1) .009(P)(WD2) + .016(P)(WD3) .004(R)(WD1) + .003(R)(WD2) + .020(WD1)^{2} + .017(WD2)^{2} + .021(WD3)^{2}$
- $C_{Y} = -.006(P) .006(R) + .169(WD1) .121(WD2) .063(WD3) .004(P)(R) + .008(P)(WD1) .006(P)(WD2) .008(P)(WD3) .012(R)(WD1) .029(R)(WD2) + .048(R)(WD3) .008(WD1)^{2}$
- $C_{M} = .023 .008(P)^{2} + .004(P) .007(R) + .024(WD1) + .066(WD2) .099(WD3) .006(P)(R) + .002(P)(WD2) .005(P)(WD3) + .023(R)(WD1) .019(R)(WD2) .007(R)(WD3) + .007(WD1)^{2} .008(WD2)^{2} + .002(WD1)(WD2) + .002(WD1)(WD3)$
- $$\begin{split} C_{YM} = & .001(P) + .001(R) .050(WD1) + .029(WD2) + .012(WD3) + .001(P)(R) .005(P)(WD1) .004(P)(WD2) .004(P)(WD3) + .003(R)(WD1) + .008(R)(WD2) .013(R)(WD3) + .004(WD1)^2 + .003(WD2)^2 .005(WD3)^2 \end{split}$$
- $C_{e} = .003(P) + .035(WD1) + .048(WD2) + .051(WD3) .003(R)(WD3) + .003(P)(R) .005(P)(WD1) + .005(P)(WD2) + .006(P)(WD3) + .002(R)(WD1)$

Fusing Titanium and Cobalt-Chrome

Courtesy Rai Chowdhary

<u>CADEMY</u> ASSOCIATES

Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

DOE "Market Research" Example

Suppose that, in the auto industry, we would like to investigate the following automobile attributes (i.e., factors), along with accompanying levels of those attributes:

A: Brand of Auto:	-1 = foreign		+1 = domestic
B: Auto Color:	-1 = light	0 = bright	+1 = dark
C: Body Style:	-1 = 2-door	0 = 4-door	+1 = sliding door/hatchback
D: Drive Mechanism:	-1 = rear wheel	0 = front wheel	+1 = 4-wheel
E: Engine Size:	-1 = 4-cylinder	0 = 6-cylinder	+1 = 8-cylinder
F: Interior Size:	-1 ≤ 2 people	0 = 3-5 people	+1 ≥ 6 people
G: Gas Mileage:	-1 ≤ 20 mpg	0 = 20-30 mpg	+1 ≥ 30 mpg
H: Price:	-1 ≤ \$20K	0 = \$20-\$40K	+1 ≥ \$40K

In addition, suppose the respondents chosen to provide their preferences to product profiles are taken based on the following demographic:

J: Age:	$-1 \le 25$ years old	+1 \ge 35 years old
K: Income:	-1 ≤ \$30K	+1 ≥ \$40K
L: Education:	-1 < BS	+1 ≥ BS

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Simplify, Perfect, Innovate

DOE "Market Research" Example (cont.)

Question: Choose the best design for evaluating this scenario

Answer: L_{18} design with attributes A - H in the inner array and factors J, K, and L in the outer array, resembling an L_{18} robust design, as shown below:

									L	-	+	-	+	-	+	-	+		
									κ	-	-	+	+	-	-	+	+		
									J	-	-	-	-	+	+	+	+		
Run*	Α	В	С	D	Ε	F	G	Н		y ₁	y ₂	y ₃	y 4	y 5	y 6	y 7	y 8	y	S
1	-	-	-	-	-	-	-	-											
2	-	-	0	0	0	0	0	0			Segn	nenta	tion d	of the	ρορι	lation	or		
3	-	-	+	+	+	+	+	+			Ŭ								
4	-	0	-	-	0	0	+	+				Res	spond	dent F	Profile	es			
5	-	0	0	0	+	+	-	-											
6	-	0	+	+	-	-	0	0											
7	-	+	-	0	-	+	0	+											
8	-	+	0	+	0	-	+	-											
9	-	+	+	-	+	0	-	0											
10	+	-	-	+	+	0	0	-											
11	+	-	0	-	-	+	+	0											
12	+	-	+	0	0	-	-	+											
13	+	0	-	0	+	-	+	0											
14	+	0	0	+	-	0	-	+											
15	+	0	+	-	0	+	0	-											
16	+	+	-	+	0	+	-	0											
17	+	+	0	-	+	-	0	+											
18	+	+	+	0	-	0	+	-											
* 10 /	differ	ont :	aradi	untra	ofile	_			-	+									•
 * 18 (unier	ent	JIOUI	uct pl	ome	5													
©2011 Air /	Acade	my As	ssocia	tes, LL	.C. Do	Not F	Reproc	duce.					F	Page	34				

Modeling The Drivers of Turnover

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Innovate

Google on DOE (quotes* from Daryl Pregibon, Google Engineer)

"From a user's perspective, a query was submitted and results appear. From Google's perspective, the user has provided an opportunity to test something. What can we test? Well, there is so much to test that we have an Experiment Council that vets experiment proposals and quickly approves those that pass muster."

"We <u>evangelize</u> experimentation to the extent that we provide a mechanism for advertisers to run their own experiments.

... allows an advertiser to run a (full) factorial experiment on its web page. Advertisers can explore layout and content alternatives while Google randomly directs queries to the resulting treatment combinations. Simple analysis of click and conversion rates allows advertisers to explore a range of alternatives and their effect on user awareness and interest."

Simplify, Perfect, Innovate * Taken From: Statistics @ Google in Amstat News, May 2011

Critical Parameter Management and COIs

- A Critical Operational Issue (COI) is linked to operational effectiveness and suitability.
- It is typically phrased as a question, e.g.,

Simplify, Perfect, Innovate Will the system *detect* the *threat* in a *combat environment* at adequate *range* to allow for successful *engagement*?

- Expected Value Analysis
- Parameter (Robust) Design

Expected Value Analysis (EVA)

EVA is the technique used to determine the characteristics of the output distribution (mean, standard deviation, and shape) when we have knowledge of (1) the input variable distributions and (2) the transfer functions.

What is the shape of the y distribution?

Simplify, Perfect, Innovate

Parameter Design (Robust Design)

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Robust (Parameter) Design Simulation* Example

Prior to Robust Design

After Robust Design

Growth Rate of Factorial Designs

For 2-level designs and k factors: 2^k combinations

- for k = 2 factors: $2^2 = 4$ combinations
- for k = 3 factors: $2^3 = 8$ combinations
- for k = 10 factors: $2^{10} = 1,024$ combinations

For 3-level designs and k factors: 3^k combinations

- for k = 2 factors: $3^2 = 9$ combinations
- for k = 3 factors: $3^3 = 27$ combinations
- for k = 10 factors: $3^{10} = 59,049$ combinations

What if the # of factors and/or the number of levels gets large?

Representative Sampling (Space Filling Designs)

- Method to populate the design space when many variables are involved (e.g., deterministic simulators) or when there are a fixed/limited number of tests specified.
- Design space has k variables (or dimensions).
 Ex: Assume k = 2
- Suppose a sample of size n is to be taken; stratify the design space into n^k cells.
 Ex: Assume n = 5; n^k = 5² = 25.
- Note: there are n=5 strata for each of the k=2 dimensions.
- Each of the n points is sampled such that each marginal strata is represented only once in the sample.
- Note: each sample point has its own unique row and column.

Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Nearly Orthogonal Latin Hypercube Designs (NOLHD)

- Method to populate a large or high-dimension design space with small samples for the purpose of estimating main effects, quadratic effects, and 2-way interaction effects, as desired.
- Design space has k variables (or dimensions).
 Ex: Assume k = 2.
- User specifies number of levels for each factor.
 Ex: Assume m = 5.
- Total number of sampled data points is n = km or, for this example, n = (2)(5) = 10.
- Each of the n points is selected in such a manner that the resulting design for estimating the desired effects is as orthogonal as possible. This is sometimes called orthogonal space filling, and it will be extremely useful to screen many, many factors.

Applying DOE to Automotive Vehicle Design

Nearly Orthogonal Latin Hypercube Design (20 variables each at 20 levels projected onto x1 vs x2)

ATES

Simplify, Perfect, Innovate

Environments Where DOE is Beneficial in Simulation and Modeling

- A high number of design variables
- A substantial number of design subsystems and engineering disciplines
- Interdependency and interaction between the subsystems and variables
- Multiple response variables
- Need to characterize the system at a higher level of abstraction
- Time and/or space must be compressed

Test Designs for Mixed Factors and Mixed Levels a.k.a. High Throughput Testing (HTT) or Combinatorial Testing

- A recently developed technique based on combinatorics
- Used to test myriad combinations of many factors (quantitative or qualitative) where the factors could have many levels
- Uses a minimum number of runs or combinations to do this
- Software is needed to select the minimal subset of all possible combinations to be tested so that all 2-way combinations are tested, i.e., all pairs testing
- HTT is not a DOE technique, although the terminology is similar
- A run or row in an HTT matrix is, like DOE, a combination of different factor levels which, after being tested, will result in a successful or failed run
- HTT has its origins in the pharmaceutical business where in drug discovery many chemical compounds are combined together (combinatorial chemistry) at many different strengths to try to produce a reaction.
- Other industries are now using HTT, e.g., software testing, materials discovery, integration, and verification testing (see example on next page).

All Pairs Testing Example (Performance Verification and Validation)

- We would like to perform verification testing with 4 input factors described below.
- All possible combinations would involve how many test combinations?
- If we were interested in testing all pairs only, how many runs would be in the test matrix and what would those combinations be? To answer this question, we used ProTest software. See next page.

Sensor Type	Weapon Type	External Data Link	Ta	arget Type	
S1	W1	Yes		T1	
S2	W2	Νο		T2	
S 3	W3			Т3	
S 4				T4	
				Т5	
Air Academy Associates,	LLC. Do Not Reproduce.	Page	56		56

Simplify, Perfect, Innovate

©2011

All Pairs Testing Example (cont.) 20 Test Cases

	Sensor	Weapon	Data Link	Target	
Case 1	S1	W2	Yes	T1	
Case 2	S4	W1	Yes	T2	
Case 3	S2	W1	No	Т3	
Case 4	S3	W3	Yes	T4	
Case 5	S2	W3	Yes	T5	
Case 6	S4	W3	No	T1	
Case 7	S3	W2	No	T2	
Case 8	S1	W3	Yes	Т3	
Case 9	S1	W1	No	T4	
Case 10	S3	W1	No	T5	
Case 11	S2	W1	No	T1	
Case 12	S1	W3	No	T2	
Case 13	S4	W2	No	Т3	
Case 14	S2	W2	Yes	T4	
Case 15	S4	W2	No	T5	
Case 16	S3	W2	Yes	Т3	
Case 17	S1	W1	Yes	T5	
Case 18	S2	W2	Yes	T2	
Case 19	S3	W3	Yes	T1	
Case 20	S4	W2	No	T4	
	a Nat Baaradua	0	Par	IA 57	

ASSOCIATES Simplify, Perfect,

Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Submarine Threat Detection Test Example

- Suppose we want to perform a verification test with the following 7 input factors (with their respective settings):
 - Submarine Type (S1, S2, S3)
 - Ocean Depth (Shallow, Deep, Very Deep)
 - Sonar Type (Active, Passive)
 - Target Depth (Surface, Shallow, Deep, Very Deep)
 - Sea Bottom (Rock, Sand, Mud)
 - Control Mode (Autonomous, Manual)
 - Ocean Current (Strong, Moderate, Minimal)

All possible combinations would involve how many runs in the test?

If we were interested in testing all pairs only, how many runs would be in the test? Pro Test generated the following test matrix.

	Factor_A	Factor_B	Factor_C	Factor_D	Factor_E	Factor_F	Factor_G
Factor Name	Submarine Type	Ocean Depth	Sonar Type	Target Depth	Sea Bottom	Control Mode	Ocean Current
Case 1	S3	Deep	Passive	Very Deep	Mud	Manual	Minimal
Case 2	S1	Very Deep	Passive	Surface	Rock	Autonomous	Strong
Case 3	S2	Shallow	Active	Shallow	Rock	Manual	Moderate
Case 4	S2	Deep	Passive	Deep	Sand	Autonomous	Moderate
Case 5	S1	Shallow	Active	Surface	Sand	Manual	Minimal
Case 6	S1	Very Deep	Passive	Shallow	Mud	Autonomous	Minimal
Case 7	S3	Very Deep	Active	Deep	Mud	Manual	Strong
Case 8	S2	Very Deep	Active	Very Deep	Sand	Autonomous	Strong
Case 9	S3	Shallow	Passive	Shallow	Mud	Autonomous	Strong
Case 10	S3	Deep	Active	Surface	Rock	Manual	Moderate
Case 11	S1	Shallow	Active	Deep	Rock	Autonomous	Minimal
Case 12	S1	Deep	Passive	Very Deep	Rock	Manual	Moderate
Case 13	S2	Very Deep	Active	Surface	Mud	Autonomous	Moderate
Case 14	S3	Deep	Active	Shallow	Sand	Manual	Strong
Case 15	S2	Shallow	Active	Very Deep	Rock	Manual	Minimal

Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Command & Control Test Example

(15 factors each at various levels) Total Combinations: 20,155,392

Variable or Factor	Levels	# of levels)
Mission Snapshots	Entry, Operations, Consolidation	า (3)
Network Size	10 Nodes, 50 Nodes, 100 Nodes	(3)
Network Loading	Nominal, 2X, 4X	(3)
Movement Posture	ATH, OTM1, OTM2	(3)
SATCOM Band	Ku, Ka, Combo	(3)
SATCOM Look Angle	0, 45, 75	(3)
Link Degradation	0%, 5%, 10%, 20%	(4)
Node Degradation	0%, 5%, 10%, 20%	(4)
EW	None, Terrestrial, GPS	(3)
Interoperability	Joint Services, NATO	(2)
IA	None, Spoofing, Hacking, Flood	ing (4)
Security	NIPR, SIPIR	(2)
Message Type	Data, Voice, Video	(3)
Message Size	Small, Medium, Large, Mega	(4)
Distance Between Nodes	Short, Average, Long	(3)

ACADEMY ASSOCIATES Simplify, Perfect,

Innovate

Command & Control Test Example

(All Pairs Testing from ProTest generates 26 test cases)

	Factor_A	Factor_B	Factor_0	CFactor_D	Factor_E	Factor_F	Factor_G	Factor_H	Factor_I	Factor_J	Factor_K	Factor_L	Factor_M	Factor_N	Factor_0
Factor Name		Network Size	Network Load	Movement	SATCOM Band	SATCOM Angle		Node Degradation	EW	Interoperability	lΑ	Security	Message Type	Size of Message	Node Distance
Case 1	Entry	100 nodes	4X	OTM2	Combo	0		0%	None	NATO	None	SIPIR	Voice	Medium	Short
Case 2	Consolidation	10 nodes	Normal	ATH	Ka	45	5%	5%	GPS	NATO	Spoofing	NIPB	Video	Large	Normal
Case 3	Operation	50 nodes	2X	OTM1	Ku	75	20%	20%	Terrestrial	Joint Serv	Hacking	NIPB	Voice	Small	Long
Case 4	Entry	50 nodes	2X	ATH	Ku	45	10%	10%	None	NATO	Flooding	NIPB	Data	Mega	Short
Case 5	Operation	100 nodes	Normal	OTM1	Combo	75		10%	GPS	NATO	Spoofing	SIPIR	Data	Small	Normal
Case 6	Operation	10 nodes	4 ×	OTM2	Combo	45	0%	5%	Terrestrial	Joint Serv	None	NIPB	Video	Mega	Long
Case 7	Consolidation	100 nodes	4X	ATH	Ka	75	20%	10%	Terrestrial	NATO	Hacking	SIPIR	Video	Medium	Long
Case 8	Operation	10 nodes	Normal	ATH	Ka	0	20%	0%	Terrestrial	Joint Serv	Flooding	NIPB	Data	Large	Short
Case 9	Consolidation	10 nodes	2X	OTM2	Ku	45		20%	None	Joint Serv	Flooding	SIPIR	Voice	Medium	Normal
Case 10	Consolidation	50 nodes	2X	OTM1	Combo	0	0%	20%	GPS	NATO	None	NIPB	Data	Mega	Normal
Case 11	Entry	50 nodes	Normal	OTM2	Ka	75		5%	GPS	Joint Serv	Hacking	SIPIR	Voice	Large	Long
Case 12	Entry	50 nodes	4 ×	OTM1	Ku	0		0%	None	Joint Serv	Spoofing	SIPIR	Video	Small	Long
Case 13	Consolidation	100 nodes	4X	OTM2	Ku	45		5%	GPS	Joint Serv	Flooding	NIPB	Data	Small	Short
Case 14	Entry	10 nodes	2X	OTM1	Ka	75	5%	0%	None	Joint Serv	Hacking	SIPIR	Data	Mega	Normal
Case 15	Entry	50 nodes	2X	ATH	Ka	75		20%	Terrestrial	NATO	Spoofing	NIPB	Video	Large	Short
Case 16	Consolidation	10 nodes	4 ×		Ku	0		20%	Terrestrial	NATO	None	NIPB	Video	Small	Normal
		50 nodes	Normal		Ku	75		5%	None	Joint Serv	Flooding	NIPB	Data	Medium	Short
Case 18	Operation	10 nodes	Normal	OTM1	Ka	75	20%	10%	P	Joint Serv	None	SIPIR	Video	Large	Normal
Case 19	Operation	100 nodes	:2X	OTM2	Combo	0		10%	Terrestrial	NATO	Hacking	SIPIR	Data	Large	Short
Case 20	Consolidation	100 nodes	Normal	ATH	Combo	D		20%	Terrestrial	Joint Serv	Spoofing	NIPR	Voice	Mega	Short
	Consolidation	50 nodes	2X		Ka	45		0%			Spoofing	SIPIR	Data	Medium	Normal
Case 22	Entry	100 nodes	Normal	OTM1	Combo	D		5%	GPS	NATO	Flooding	NIPR	Video	Medium	Long
		10 nodes			Ka	45		10%			Hacking	SIPIR	Voice	Small	Normal
Case 24	Entry	50 nodes	4×	ATH	Ku	45		20%	None	NATO	None	NIPB	Video	Large	Long
Case 25	Consolidation	10 nodes	2X	ATH	Ku	75		5%	None	Joint Serv	Spoofing	NIPB	Data	Large	Long
Case 26	Consolidation	100 nodes	Normal	OTM2	Combo	45	5%	20%	GPS	Joint Serv	Spoofing	NIPR	Voice	Mega	Normal

The Efficiency of All Pairs Testing

- Suppose we had 75 Factors to test.
- Suppose we wanted to test each of these at 2 levels.
- How many total combinations are there?

2⁷⁵ = 37, 778, 931, 862, 957, 161, 709, 568

i.e., 37 Sextillion, 778 Quintillion, 931 Quadrillion, 862 Trillion, 957 Billion, 161 Million, 709 Thousand, 568

- What is the minimum number of these combinations that will have to be tested in order to test every 2-way combination?
- To answer this question, we used our Pro-Test software. The answer is 14 runs or experimental combinations.
- For k factors each having the same number of levels tested, say v, then the minimum number of tests ≈ v² (ln k)

Useful Applications of HTT

- Reducing the cost and time of testing while maintaining adequate test coverage
- Integration, functionality, and verification testing
- Creating a test plan to stress a product and discover problems
- Identifying the critical factors affecting performance in an operational test environment
- Prescreening before a large DOE to ensure all 2-way combinations are feasible before discovering, midway through an experiment, that certain combinations are not feasible
- Developing an "outer array" of noise combinations to use in a robust design DOE when the number of noise factors and settings is large

The 12-Step Approach to DOE

Steps for Experimenta	l Design		
I. Statement of the Problem:			
	l.		
II. Objective of the Experiment:]		
III. Start and End Date:			
Budget:			
IV. Select Quality Characteristic	s (also known	as responses	outputs or Y's)
···· ···· ···· ·····			
	Turne	•	
	Type (attribute or	Anticipated	How will you measure the response? Is the measruement
Response	continuous)	Range	method accurate and precise?

The 12-Step Approach to DOE (cont.)

V. Complete a literature review, process flow diagram, and cause/effect diagram. Select factors which are anticipated to have an effect on the response. Write SOPs for all variables that are to be held constant.

Factor	Type (attribute or continuous)	Controllable or Noise	Range of Interest	Levels	Anticipated Interactions With	How Measured?
VI. Determine the number of res experiment.	ources to be i	used in the				
	1					
VII. Which design types and ana appropriate?	Ilysis strategie	es are				
VIII. Select the best design type suit your needs.	and analysis	strategy to				
©2011 Air Academy Associates, LLC.	Do Not Reproc	luce.	Page 64			

<u>Air</u> <u>Academy</u> Associates

The 12-Step Approach to DOE (cont.)

Key Take-Aways

- Various approaches to combinatorial test, to include OFAT and Oracle (Best Guess).
- DOE brings orthogonal or nearly orthogonal designs into play.
- Orthogonality (both vertical and horizontal balance in a design) is key to being able to evaluate the effects of factors and their interactions independently from one another.
- Factorial designs are great, but in a world of large test design spaces, we need something else.
- Latin Hypercube Sampling and Descriptive Sampling are useful design strategies when we want good test coverage for many variables with a minimum or specified number of tests. However, these designs are typically not orthogonal.
- Nearly Orthogonal Latin Hypercube Designs provide a sampling strategy to test a large number of factors with a much smaller number of runs than what a factorial design requires, while still retaining adequate orthogonality. These are particularly useful when designing experiments for computer simulations.
- All Pairs Testing, a type of HTT, is a way to get great test coverage (i.e., all pairwise combinations) with a minimal number of runs for a test scenario involving mixed factors (quantitative or qualitative) with a mixed number of levels. This would be a candidate design for OT&E when we are trying to verify and validate performance in an operational envelope. These designs can be orthogonal or nearly orthogonal.

Thank You

Questions

Simplify, Perfect, Innovate **Colorado Springs, Colorado**

©2011 Air Academy Associates, LLC. Do Not Reproduce.

